Alternative Approaches for Removing Fish Meal and Oils from Farmed Shrimp Diets Using Plant and Poultry Meals with Marine Algal Products

Craig L. Browdy

Marine Resources Research Institute Waddell Mariculture Center Charleston, SC USA browdyc@dnr.sc.gov

SCDNR: Craig L. Browdy, John W. Leffler

Diet formulation and testing: D. Allen Davis – Auburn University, Tzachi M. Samocha – Texas Agricultural Experiment Station, Robert A. Bullis – Advanced Bionutrition Corporation

Diets manufactured by: Zeigler Bros. Inc. Gardners PA

Lipid Analysis: Gloria Seaborn – NOAA's Center for Coastal Environmental Health and Biomolecular Research

Funded through:

USDA - Cooperative State Research, Education and Extension Service US Marine Shrimp Farming Program

Advanced Bionutrition Corporation NOAA Small Business Innovation Research

NOAA Oceans and Human Health

USDA - Cooperative State Research , Education and Extension Service Integrated Organic Program

Feed production and fish meal use

 World feed production 630 million tons (Global Information Inc.)

Aquaculture 4%
Uses 57% world fish meal

Shrimp Culture

- 4% volume
- 20% value
- Uses 23% fish meal used by aquaculture

Tacon, A.G.J., M. R. Hasan, R. P. Subasinghe 2006. Use of fishery resources as feed inputs to aquaculture development: Trends and policy implications. FA Fisheries Circular No 1018. P 114.

Feed production and fish meal use

 World feed production 630 million tons (Global Information Inc.)

Aquaculture 4%
Uses 57% world fish meal

Shrimp Culture

- 4% volume
- 20% value

Simple Facts:

- 1) Supply is limited
- 2) Use is increasing
- 3) Prices are going up

4) Toxin levels a concern

• Uses 23% fish meal used by aquaculture

Tacon, A.G.J., M. R. Hasan, R. P. Subasinghe 2006. Use of fishery resources as feed inputs to aquaculture development: Trends and policy implications. FA Fisheries Circular No 1018. P 114.

Fish meal and fish oil free diets **Organically certifiable diets** Environmentally Friendly • Reduce pressure on pelagic fisheries Contaminant Free Mercury, organochlorine compounds etc. Feed costs and potential for specialty markets Attention to PUFA especially DHA and EPA • Lower heart disease and stroke risk Brain development and health

DHA and ARA - microbial fermentation

Aquagrow Gold • Schizochitrium sp. Aquagrow ARA • Mortierella alpine

Other than fish, algae are the only source of DHA

Tank studies at TAES

- ♦ 650 1.85 m²
- Shaded
- Aerated
- ♦ SPF L. vannamei
- ♦ 30 shrimp/m²
- Water quality monitoring
- Oil from microbial fermentation products
- ProfoundTM co-extruded soybean and poultry byproduct meal with egg supplement
- Organic plant protein sources

	Experiment I			E x p e r i m e n t II			
	Diet 1	Diet 2	Diet 3	Diet 4	Diet 5	Diet 6	
	A G 2 - 0 . 5	A G 0.5-0.13	P rofound	A G 0.5-0.13	w/o M F O	O rganic	
Profound ^{TM1}	39.00	39.00	39.00	39.00	39.00		
Soybean meal ²	29.50	30.20	30.50	30.20	30.20		
Soybean meal, organic ³						58.10	
Field Pea Meal ⁴						10.00	
Corn gluten, organic ⁵						9.00	
Aqua Grow-HiDHA ⁶	2.00	0.50		0.50		0.50	
AquaGrow ARA ⁶	0.50	0.13		0.13		0.13	
Kelp meal ⁷						0.50	
Menhaden Fish Oil ⁸			3.04				
Soyoil ⁹	1.47	1.53		1.53	1.30		
Soy oil, organic ¹⁰						0.20	
Flax oil (linseed oil) 11	0.48	1.23		1.23	1.80		
Flax oil, organic ¹²						2.00	
W heat starch ⁹	1.98	2.34	2.39	2.34	1.63		
W hole wheat ⁹	20.00	20.00	20.00	20.00	21.00		
W hole w heat-organic ¹⁰						14.00	
Trace M ineral prem ix	0.50	0.50	0.50	0.50	0.50	0.50	
V itam in prem ix	1.80	1.8	1.8	1.80	1.80	1.80	
Choline chloride ⁹	0.20	0.20	0.20	0.20	0.20	0.20	
Stay C 250 mg/kg 14	0.07	0.07	0.07	0.07	0.07	0.07	
C a P - d ie b a sic ⁹	2.00	2.00	2.00	2.00	2.00	2.00	

Harvest data

	Plant-Organic	Poultry
Ingredients	Percent by Weight	Percent by Weight
Expelled soybean meal, 42/7, organic	58.10	
Soybean meal solvent extracted		39.44
Whole soft wheat, organic	12.00	
Feed wheat		30.17
Pet food grade poultry by-product meal		12.00
Canadian feed pea meal, organic	10.00	
Non-GM corn gluten meal, 60% protein	9.00	8.00
Flaxseed oil	2.00	
Di-Calcium phosphate	2.00	1.92
Aqua-Bond-CM		1.38
Federal vitamin premix #30 w/o choline	1.80	0.50
UF premix- CO		2.00
Flax seed		
Squid liver meal	1.00	
Liquid fish solubles	1.00	
AquaGrow-schizochytrium-DHA®	0.50	
USFW #3 Mineral Mix	0.50	
Non-GM lecithin	0.50	0.50
BetaFin BT-Danisco	0.50	
Kelp meal, Acadian Seaplants Limited	0.50	
Wheat starch		
Soy oil, no additives, organic	0.20	3.68
Choline chloride, 70%	0.20	0.20
Cholesterol		
AquaGrow ARA [®]	0.13	
Aqua Min		0.15
Stay C 35%	0.07	0.07

Experimental design

Six 0.1 HA ponds ♦ 0.8 g. nursed juveniles, 25/m² Initial filling 400 um screen, fertilization No water exchange ♦ 89 days Weekly sampling Feed adjusted by growth and consumption Control 35% protein shrimp grower

Shrimp production results for fish meal based diet vs. organically certifiable plant based diet

Diet	Harvest size (g)*	Production (kg/ha)	Growth rate (g/wk)	Survival (%)	FCR
Commercial Diet	18.7 ± 0.7	4594 ± 102	1.0 ± 0.03	93 ± 3	1.4 ± 0.03
Plant Based Diet	19.2 ± 0.5	4592 ± 151	1.0 ± 0.05	88 ± 2	1.3 ± 0.03

Conclusions

 No significant differences in harvest weight, production, growth, survival or FCR Under conditions of the present trial, the fish meal and fish oil free, plant based diet supplemented with DHA and AA and very small amounts of squid meal and liquid fish solubles can be a fully equivalent shrimp production grow-out feed compared to conventional diet

Experimental design

Six 0.1 HA ponds ◆ 1.4 g. nursed juveniles, 80/m² Initial filling 400 um screen, fertilization Limited water exchange (2x20%) \diamond 91 days Weekly sampling Feed adjusted by growth and consumption Control 35% protein shrimp grower

Shrimp production results for fish meal based diet vs. poultry meal based diet

Diet	Harvest size (g)*	Production (kg/ha)	Growth rate (g/wk)	Survival (%)	FCR
Commercial Diet	14.0 ± 2.9	10,920 ± 672	0.97	72.4 ± 1.4	1.6 ± 0.2
Poultry Meal Based Diet	15.3 ± 2.7	11,723 ± 1,557	1.07	85.6 ± 13.2	1.7 ± 0.1

Conclusions

Shrimp fed poultry meal based diet were larger than those fed the conventional diet No significant differences in harvest biomass, survival or FCR Under conditions of the present trial, the fish meal and fish oil free, poultry meal based diet produced results comparable to a conventional feed even at high stocking densities and production levels

Do the plant based fish meal, fish oil free shrimp diets produce an equivalent nutritional product from the human health perspective?

Fatty acid analyses were conducted for each test diet and on shrimp tail meat samples from each study.

Analytical Scheme

- Lipid extraction
- Transesterification yielding fatty acid methyl esters (FAME)
- Separation and quantification of FAME by GC/MS
- Comparison of chromatograms of unknowns with those of voucher samples.

Shrimp nutritional quality Plant based vs. conventional diet

- Differences in lipid profiles between the two diets in PUFA percentages
- LA and LnA significantly higher in shrimp fed plantbased diet
- AA, EPA and DHA significantly lower in shrimp fed plant-based diet
- Ratio of total n-6/n-3 fatty acids was 1.13 in shrimp fed the plant based diet compared to 0.58 in shrimp fed the fish meal based diet

 Primary contributing factor was incorporation of dietary LA (40% in plant based feed) resulting in a level in the shrimp of 23%

Lipid analysis

Concentration of Important PUFAs in Feeds

* denotes significant difference (P<0.05)

Conclusions

- Overall percent lipid in shrimp was equivalent for the two diets
- Mean lipid content of 1.0 % for the study shrimp, low fat to protein ratio
- EPA and DHA content was lower for the organic diet, but the shrimp (on a body weight equivalent basis) exceeded levels from USDA Nutritional Database (2005) for beef, pork, chicken
- Role of natural productivity in production performance and in lipid profiles to be determined

Experiments are underway to explore the role of natural productivity in improved ecologically based holistic approaches to organic shrimp farming

Bacteria Cyanobacteria Green Algae Diatoms Dinoflagellates

Chemoautotrophs Photoautotrophs Heterotrophs

USDA certified organic shrimp

- Fish meal and oil can be removed from diets for marine shrimp L. vannamei without significantly reducing growth
- Terrestrial animal and plant proteins can be viable alternatives to meet marine protein requirements if amino acid balance is maintained
- Use of organically certifiable animal proteins in combination with vegetable based ingredients should be considered
- Replacement of marine oils will require an alternative HUFA source such as microbial meals to assure production performance and nutritional quality

Supplemental: Taste and texture data in response to NOSB question

Mississippi State Data

 No statistical difference between FM/FO-grown shrimp and "Sustainable Shrimp".

 ✓ FM/FO-grown shrimp had stronger "fishy" and "pungent" flavor notes.

"Sustainable Shrimp" had more"sweet" and "earthy" flavor notes.

Taste and Texture ?

Taste and Texture ?

